
 

 

  
Abstract— In this paper the new boundary conditions are 

presented for the understanding of flow behavior in a reservoir 
with fractures. As can be seen from the current seismic 
researches, most of the reservoirs in the world have faults with 
different permeability. The derived boundary conditions allow 
us to model filtration process for cases of tectonic faults and 
for hydraulic fracturing. It is achieved throw the complex 
potential and mathematical analyze technique.  
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I. INTRODUCTION 
ased on the fact that most of oil fields are on the late stage 
of field development, from the economical point of view, 
it becomes necessary to produce hard-to-extract oil, which 

can be obtained only by use of  enhance oil recovery methods. 
The effective oil and gas field development is a complicated 
problem, especially in conditions of low oil price and depleted 
reservoirs. Currently more often we need to produce hard-to-
extract oil, which requires application of complicated enhance 
oil recovery methods and modern geophysical researches. For 
example, many low permeable or shale formations can be 
developed only with application of massive hydraulic 
fracturing technique. Therefore, for engineers, there is an acute 
problem of fast evaluation and selection of a suitable 
production system and a well completion.  
In addition, modern geophysical researches show that mostly 
oil bearing formations are complicated with tectonic faults of 
different shape and permeability. These discontinuities exert 
essential influence on the field development process and on the 
well performance. For the modeling of fluid flow in the 
reservoir with some area of different permeability, we should 
determine the boundary conditions. In this article for the first 
time the boundary conditions for the problem of fluid filtration 
in the reservoir with some discontinuity are considered. This 
discontinuity represents thin but long area, which can be 
hydraulic fracturing of tectonic fault. The obtained boundary 
condition equations allow us to take into account pressure 
difference above and below the section and different values of 
permeability. 

One of the most effective enhance oil recovery techniques 
is hydraulic fracturing [1]. Many scientists are involved into 
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the modeling of fluid flow to the well with hydraulic fracturing 
[2-8].  But generally the highly permeable fracture is 
considered to cross the well symmetrically.  

However, the modern geophysical researches allow getting a 
more detailed conception of the reservoir’s tectonics. As a 
result, we can see that most formations are crossed with 
tectonic fractures and faults of different shape. Hence, it is 
necessary to model the influence of such discontinuities on the 
fluid flow process. Consequently the problem formulation 
becomes more complicated, because we need to take into 
account not only various locations of fracture and wells but 
also different values of fracture permeability. 

In this paper the derivation of the boundary conditions is 
shown. Such boundary conditions allow us to model the fluid 
filtration process in the reservoir with discontinuities. Given 
discontinuity represents thin area with different permeability in 
comparison with the rock and it can be tectonic fault or 
hydraulic fracture. In the works [9-14] the number of solutions 
of boundary value problems of the theory of fluid flow to the 
producing wells in the presence of discontinuities in the oil 
reservoir were considered. The equations for the flow potential 
were defined both for the case of a single well (production) 
and for the case of two wells (production and injection), i.e. 
the element of water-flooding system. These solutions consider 
not only all possible values of fracture conductivity but also 
the symmetry or asymmetry of the problem statement, that is 
the value of the difference of pressures on the upper and lower 
banks of the cut.  However, the derivation of additional 
boundary conditions for this kind of discontinuity in [9-14] 
was absent, which this work is devoted to. 

II. THE DERIVATION OF BOUNDARY CONDITIONS 
Let us consider a plane problem of the theory of 

homogeneous liquid filtration in the presence of discontinuities 
in oil reservoir. In the case when the discontinuity was a 
hydraulic fracture [1-4], highly permeable area of the fracture 
was represented in the form of a confocal ellipse that was 
displayed using the Zhukovsky function on the exterior of the 
unit circle. 

In this work, a discontinuity of oil layer is represented as 
some discontinuity line AB on plane (Fig. 1), the thickness of 
which is δ(s). The equation of this curve is as follows: 
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Fig. 1 The discontinuity line AB 

 
Let the reservoir has a constant permeability k and the 

pressure p(x,y). Suppose that kf and pf are the corresponding 
values of permeability and pressure in the fracture. 
 Let the motion of the fluid in the fracture and in the reservoir 
subject to linear Darcy's law. Then the velocity vector of a 
filtration in the reservoir in a Cartesian coordinate system v(νx, 
νy) is as follows: 
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Similarly, the filtration rate vector in the fracture in a 

curvilinear coordinate system associated with a crack (t, n) will 
have the form: 
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Further, the incompressibility condition of fluid in the 

reservoir and in the fracture can be written as 
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Equations (2) - (4) must be supplemented by the condition 

of continuity of the solution at the "reservoir-fracture", or 
condition of continuity of the pressure and the normal velocity 
component: 

 
















 ±±=






 ±







 ±±=






 ±

.,cos
2

)()(,sin
2

)()(
2

)(,

,,cos
2

)()(,sin
2

)()(
2

)(,

αδαδδ

αδαδδ

ssyssxvssv

ssyssxpssp

n
f

n

f
   (5) 

 
Let us average incompressibility condition (5) on thickness 

of the crack δ (s): 
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Let us define the total fluid flow along fracture through 

q(s): 
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Let take into account that: 
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As a result, we obtain the following equation: 
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Given that vn

f  and vt
f are the projections of vector  at 

point Р on the line L at vectors  and , and in (11) the values 
of these projections relate to the L1 and   L2 lines (Fig. 2), 
placed from the line L along normal on distance , 
equations for lines L1 and  L2  can be written as follows: 
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Fig. 2 Places of lines L, L1, L2. 

 
Given that the normal components of the velocity vector 

along the crack as follows: 
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Substituting expressions (9) - (10) into equation (8), we get 

the following equation: 
 

.0)()()(
21 =−+ PvPv

ds
sdq f

n
f

n             (11) 

 
Similarly, averaging Darcy equation (2) - (3) on thickness 

of the crack δ(s), we obtain: 
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Thus, the continuity equation (11) and Darcy equation in 

the fracture (12) - (13) take the following form: 
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If we take into account the condition of fluid flow 

continuance at the boundary "fracture-reservoir", or at the 
points Р1 and Р2 the relations vn

f(P1,2)= vn(P1,2) and 
pf(P1,2)=p(P1,2) is performed, and if we let P1→P+ and P1→P-, 
we get the following additional boundary conditions on the 
discontinuity line L:  
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where q(s) is the total flow of liquid along the fracture, p(s) 
and vn(s) is the pressure and the inflow rate of fluid from the 
formation into the fracture through the upper and lower edges 
of the cut, reflected respectively by + and –. 

Let assume, the well is located at the point z0, flow rate Q, 
radios of external boundary Rc and well radios rw. Let we 
define the complex flow potential for an incompressible fluid 
in the reservoir through φ(z): 

 
P(x,y)=Re φ(z), 

vn(P) =  Im φ’(z(s)) =  Im =   Im φ(z(s)). 
 
In this case, the system of equations (15) in the fracture 

will look like this: 
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From the system (16), we obtain two equations for  and 
: 
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The case when the fracture (-l,l)  is axially symmetrical 

relative to the x-axis was considered in [15]. In this case, on 
conditions  and the 
boundary value problem (17) takes the form: 

 

,Re1Im 2 ϕξϕ ′−−= Fcd                                                    
 

where ξ=x/l is dimensionless coordinate along the fracture, 
Fcd=kfδ0/2kl is the dimensionless fracture conductivity. 

III. APPLICATION 
The boundary conditions, derived in this paper, can be 

widely applicate in various cases for fluid flow modelling in a 
reservoir. For instance in a case when a fracture intersects one 
of wells we have a hydraulic fracturing case. This is a 
symmetrical case, but if we consider a pair of wells (injection 
and production), we need take into account pressure difference 
above and below the fracture (boundary). This case was 
explained in [14]. The flow potential of that case: 
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These equations can be used for calculation of skin factor 

of the well and for the flow lines modelling (Fig. 3-4). 
Different colors in the pictures show the waterflooding stages, 
or the position of waterfront in a particular time. Red – the 
waterflooded area, from the beginning of the process to the 
half of the process; yellow – the waterflooded area, from the ½ 
of the process to the ¾ of  the process;  blue – the 
waterflooded area, from the ¾ of the process to the  water 
breakthrow time; purple -  the waterflooded area at the 
breakthrow time. 

The equation (18) and boundary conditions (17) are 
suitable for cases when a fracture is located on some distance 
from wells, this case is described in [12], [13] and [15] (Fig. 4-
5) 

 
 
 
 

 

Fig. 3 Streamlines waterflooding process with tracer lines (angle 30). 
The injection well located - at the (-√3, -1), the hydraulically 

fractured production - at the point (0, 0) 

 
Fig. 4  Streamlines waterflooding process with tracer lines (angle 30). 

The hydraulically fractured injection well - at the (0, 0), the 
production well - at the point (1, √3) 
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Fig. 5 Streamlines waterflooding process with tracer lines, the 

injection well located at the point (-1, -1), production well (1, 1), for 
the values of α0=∞; β0=0 (Upper) and α0=0; β0=∞ (Lower). 

 
 

 
 

Fig. 6 Streamlines waterflooding process with tracer lines, the 
injection well located at the point (-1, -1), production well (1, 1), for 

the values of α0=∞; β0=0 (Upper) and α0=0; β0=∞ (Lower). 
 

IV. CONCLUSION 
In the present article derivation of boundary conditions are 

considered in depth for task of homogenous incompressible 
fluid in the reservoir complicated by narrow expanded 
heterogeneity by permeability. A boundary condition might be 
used for fracture with different conductivity, for instance 

hydraulic fracture, tectonic faults or impermeable boundary. 
At once received formulas allow deciding problems of 
filtration for all kinds of wells and discontinuity allocations. 
The results were already used for the modeling of fluid flow in 
the reservoir with fracture for the case of single production 
well [9-13] and for the case of production and injection wells 
or a waterflooding element in a production system [14-15]. 
The influence of discontinuity on the well productivity and 
equations for skin were defined using this boundary condition 
[13]. In addition the water breakthrough time and 
breakthrough sweep efficiency has been analyzed for different 
parameters of wells locations [14-15]. The further applications 
lie in modeling of fluid flow in the reservoir with massive 
hydraulic fracturing, it helps to optimize well spacing 
parameters. 
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